The deformation of retaining piles and ground surface under various support systems during deep excavation
نویسندگان
چکیده
Background: Since the high-rise buildings and deep underground structures dramatically increases in urban area, the decent design and construction of deep excavations is essential before these structures are actually built up. The building area is very susceptible to the changes of their geo-environment, and even minor insecurity of a deep excavation may lead to a catastrophic failure of structures and deformation of the ground. Therefore, the adverse influence of deep excavation on the surrounding environment should be monitored and controlled stringently. Results: Based on the real case of deep excavation in Xuzhou, China, a FDM numerical model, which was accomplished by FLAC-3D, was developed to evaluate the deformation of retaining piles and ground surface under various excavation support systems. The original pile-anchor support system was simulated as well as the proposed quincunx double-row piles support system. For the original support system, the deformations were discussed by comparing the numerical results with monitoring data. For the proposed support system, orthogonal tests were designed to evaluate the influence of multiple factors on the effectiveness of excavation support. The optimum solution for the proposed support system was obtained through orthogonal tests. Conclusion: Results show that the pile space is the primary factor for the excavation-induced deformations, which can be reflected by the lateral displacement of retaining piles and the settlement around the excavation, while the row space has insignificant influence on the deformations. The conclusions of this paper can contribute to the design of similar projects and avoid excessive deformation of the ground during excavation in the future.
منابع مشابه
Study of Loose Soil Layer Effects on Excavations Supported by Steel Sheet Pile Walls – A Numerical Study
Abstract Steel sheet pile walls are being widely used in civil engineering projects for support systems. Soil is not uniform in depth, sometimes may be exit loose or soft soil layer in various depth. This issue can cause different effects on ground surface displacements, forces and moments acting on sheet piles and struts during excavation procedure, compared with status that soil is uniform...
متن کاملNumerical modeling of tunneling induced ground deformation and its control
Tunnelling through cities underlain by soft soil, commonly associated with soil movement around the tunnels and subsequent surface settlement. The predication of ground movement during the tunnelling and optimum support pressure could be based on analytical, empirical or the numerical methods. The commonly used Earth pressure balance (EPB) tunneling machines, uses the excavated soil in a pressu...
متن کاملPerformance Analysis of Nail Walls in Jointed Rocks Based on Excavation-Induced Damage
Evaluation of the excavation-induced ground movements is an important design aspect of supporting system in urban areas. This evaluation process is more critical to the old buildings or sensitive structures which exist in the excavation-affected zone. Frame distortion and crack generation are predictor, of building damage resulted from excavation-induced ground movements, which pose challenges ...
متن کاملStudy of Bored Pile Retaining Wall Using Physical Modeling
Abstract—Excavation and retaining walls are of challenging issues in civil engineering. In this study, the behavior of one important type of supporting systems called Contiguous Bored Pile (CBP) retaining wall is investigated using a physical model. Besides, a comparison is made between two modes of free end piles (soft bed) and fixed end piles (stiff bed). Also a back calculation of effective ...
متن کاملEvaluation of Seismic Vulnerability of Reinforced Concrete Buildings Adjacent to the Deep Excavations
In this study, the effect of deep excavation on the seismic response of RC moment resisting building systems has been studied. Deep excavation can cause significant changes in the stress and strain levels of soil environment and also changes in the propagation of seismic waves. This leads to permanent displacements in the foundation system. In this study, three RC building systems, i.e. 5, 10, ...
متن کامل